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Abstract
Recent work claimed that the off-diagonal gluons (and ghosts) in pure Yang–
Mills theories, with maximal Abelian gauge (MAG) fixing, attain a dynamical
mass through an off-diagonal ghost condensate. This condensation takes
place due to a quartic ghost interaction, unavoidably present in MAG for
renormalizability purposes. The off-diagonal mass can be seen as evidence for
Abelian dominance. We discuss why ghost condensation of the type discussed
in those works cannot be the reason for the off-diagonal mass and Abelian
dominance, since it results in a tachyonic mass. We also point out what the full
mechanism behind the generation of a real mass might look like.

PACS numbers: 12.38.Aw, 12.38.Lg

1. Introduction

As everybody knows, quarks are confined: nature and lattice simulations of nature tell us
this. Still, there is no rigorous proof of confinement. One proposal for the explanation
of confinement is the idea of the dual superconductor—magnetic monopoles condense and
induce a dual Meissner effect: colour-electric flux between charges is squeezed and a string is
created in between. The original work on this topic can be found in [1–3]. Abelian projection
[4] is a way to reveal the relevant degrees of freedom (the monopoles). Loosely speaking, at
points where the projection is ill defined, singularities invoke (Abelian) monopoles. Abelian
dominance means that low energy QCD is dominated by Abelian degrees of freedom. An
early work on this is presented in [5]. Numerical evidence can be found in e.g. [6–8] and more
recently in [9].

Can this Abelian dominance be founded on more theoretical grounds? In the light of
renormalization à la Wilson, and assuming that the off-diagonal gluons (ghosts) attain a mass
M while the diagonal ones remain massless, an effective theory in terms of the massless
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diagonal fields could be achieved at low energy (�M), thereby realizing a kind of Abelian
dominance. In the context of low energy theories, we would like to refer to the Appelquist–
Carazzone decoupling theorem [10], which states that heavy particle modes decouple at low
energy. Note that this decoupling does not mean ‘heavy terms’ are simply removed by hand
from the Lagrangian, their influence is still present through renormalization effects. As an
illustration of this, a low energy, Abelian theory for Yang–Mills was derived in [11], but the
corresponding β-function was shown to be the same as the full Yang–Mills one. Let us also
quote an early, important paper by Cornwall on the topic of a dynamical gluon mass and the
possible consequences [12].

The aforementioned pathway has been followed in a series of papers by Kondo et al
[11, 13–19] and more recently the technique of the exact renormalization group has been
employed by Freire [20, 21] to construct effective low energy descriptions of the Yang–Mills
theory. The results have been used in order to construct a linearly rising potential between
static quarks, a criterion for confinement. Their efforts were based on the dual superconductor
picture, realized with maximal Abelian gauge (MAG). Also, the monopole condensation was
discussed in their framework. An essential ingredient of their work is the mass scale of the
off-diagonal fields. The monopole condensate is proportional to this mass squared [11]. The
lattice reported a value of approximately 1.2 GeV for the off-diagonal gluon mass in MAG
Yang–Mills [9]. Next to these numerical results, analytical information is needed on how this
mass increases. A few papers have been written on this issue [14, 22–24]. All these authors
came to the same conclusion: a dimension two ghost condensation gives an off-diagonal mass
M. We already mentioned (but did not show explicitly) in a previous paper that we found the
ghost condensation gives a tachyonic off-diagonal gluon mass [25]. In this paper, we will
perform the calculations explicitly step by step. To make it self-contained, we will start from
the beginning and in order to make comparison as transparent as possible, we will follow the
(notational) conventions of [14]. For the sake of simplicity, we will restrict ourselves to the
SU(2) case. We discuss the (in)completeness of presented work. We end with the path we
intend to follow in the future to investigate dynamical mass generation in MAG.

2. Ghost condensation in the maximal Abelian gauge

Consider the Yang–Mills Lagrangian in four-dimensional Minkowski space time

L = − 1
4F

A
µνFAµν + LGF+FP (1)

where LGF+FP is the gauge fixing and Faddeev–Popov part.
We decompose the gauge field as

Aµ = AA
µT A = aµT 3 + Aa

µT a (2)

Fµν = FA
µνT

A = DµAν − DνAµ = ∂µAν − ∂νAµ − ig[Aµ,Aν] (3)

The T A are the Hermitian generators of SU(2) and obey the commutation relations [T A, T B] =
if ABCT C . T 3 is the diagonal generator. The capital index A runs from 1 to 3. Indices a, b, . . .

run from 1 to 2 and label the off-diagonal components. We will drop the index 3 later on.
As a gauge fixing procedure, we use MAG. Introducing the functional

R[A] = (V T )−1
∫

d4x

(
1

2
Aa

µAµa

)
(4)

with V T being the space time volume, MAG is defined as that gauge which minimizes R
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under local gauge transformations. Since (4) is invariant under U(1) transformations w.r.t.
the ‘photon’ aµ, MAG is only a partial gauge fixing. We do not fix the residual U(1) gauge
freedom, since it plays no role for what we are discussing here.

To implement the gauge fixing in the Lagrangian (1), we use the so-called modified MAG.
This gauge is slightly different from the ordinary MAG, it possesses for instance some more
symmetries (see [18] and references therein). Moreover, it generates the four-point ghost
interaction, indispensable for the renormalizibility of MAG, as was proved in [26].

Explicitly, we get

LGF+FP = iδBδ̄B

(
1

2
Aa

µAµa − α

2
iCaC̄a

)
(5)

where α is a gauge parameter, C and C̄ denote the (off-diagonal) ghosts and anti-ghosts, δB

and δ̄B are the BRST and anti-BRST transformations respectively, defined by1

δBAµ = DµC = ∂µC − ig[Aµ, C]

δBC = ig

2
[C, C]

(6)
δB C̄ = iB

δBB = 0

δ̄BAµ = DµC̄ = ∂µC̄ − ig[Aµ, C̄]

δ̄B C̄ = ig

2
[C̄, C̄]

δ̄BC = iB̄ (7)

δ̄B B̄ = 0

B + B̄ = g[C, C̄]

with the following properties

δ2
B = δ̄2

B = {δB, δ̄B} = 0

δB(XY) = δB(X)Y ± XδB(Y ) (8)

δ̄B(XY ) = δ̄B(X)Y ± Xδ̄B(Y )

where the upper sign is taken for bosonic X, and the lower sign for fermionic X.
Performing the BRST and anti-BRST transformations yields

LGF+FP = BaDab
µ Aµb +

α

2
BaBa + iC̄aDac

µ DµcbCb − ig2εadεcbC̄aCbAµcAd
µ

+ iC̄agεabC3Dbc
µ Aµc − iαgεabBaC̄bC3 +

α

4
g2εabεcdC̄aC̄bCcCd (9)

where

Dab
µ ≡ Dab

µ [a] = ∂µδab − gεabaµ (10)

is the covariant derivative w.r.t. the U(1) symmetry and

ε12 = −ε21 = 1 (11)

ε11 = ε22 = 0. (12)
1 C = (Ca, C3) with C3 being the diagonal ghost. Analogously, for C̄.
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When we integrate the multipliers B out, we finally obtain

LGF+FP = − 1

2α

(
Dab

µ Aµb
)2

+ iC̄aDac
µ DµcbCb − ig2εadεcbC̄aCbAµcAd

µ

+
α

4
g2εabεcdC̄aC̄bCcCd. (13)

Note that the diagonal ghost C3 has dropped out of (13).
For the (singular) choice α = 0, the 4-ghost interaction cancels from the Lagrangian.

However, radiative corrections due to the other, non-vanishing four-point interactions,
reintroduce this term. We further assume that α �= 0. Some more details concerning the
properties for α = 0 can be found in [24].

To discuss the ghost condensation mechanism, we ‘Gaussianize’ the 4-ghost interaction
in the Lagrangian by means of the (U(1) invariant) auxiliary field φ

α

4
g2εabεcdC̄aC̄bCcCd → − 1

2αg2
φ2 − iφεabC̄aCb. (14)

A useful identity to prove (14) reads

εabεcdC̄aC̄bCcCd = 2(iεabC̄aCb)2. (15)

The part of the Lagrangian which concerns us for the moment is

L̂ = iC̄a∂µ∂µCa − 1

2αg2
φ2 − iφεabC̄aCb. (16)

Assuming constant φ, we use the Coleman–Weinberg construction [27] of the effective
potential V (φ). This means we are summing all one-loop (off-diagonal) ghost bubbles with
any number of φ-insertions. This yields

(V T )V (φ) =
∫

d4x
φ2

2αg2
+ i ln det(∂µ∂µδab − φεab) (17)

or

V (φ) = φ2

2αg2
− 1

i

∫
d4k

(2π)4
ln(k4 + φ2). (18)

Employing the Wick rotation2 k0 → ik0, and performing the integration in dimensional
regularization within the MS scheme, we arrive at

V (φ) = φ2

2αḡ2
+

φ2

32π2

(
ln

φ2

µ̄4
− 3

)
. (19)

This potential possesses a local maximum at φ = 0 (the usual vacuum), but has global minima
at

φ = ±v = ±µ̄2 e
1− 8π2

αḡ2(µ̄2) . (20)

We take α > 0 since v diverges for ḡ2 → 0 if α < 0.
Up to now, we find complete agreement with [14]. We proceed by calculating the

ghost propagator in the non-zero vacuum (V (v) < 0). Substituting φ = v in (16), it is
straightforward to determine the Feynman propagator

〈Ca(x)C̄b(y)〉 =
∫

d4k

(2π)4

−k2δab + vεab

k4 + v2
e−ik(x−y). (21)

2 If one would like to avoid Wick rotations, one could start immediately from the Euclidean version of Yang–Mills.
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With the above propagator, we are ready to determine the one-loop off-diagonal gauge boson
polarization. Now, there exists a non-trivial contribution coming from the ghost bubble,
originating in the interaction term −ig2εadεcbC̄aCbAµcAd

µ, resulting in a mass M for the
off-diagonal gluons. Again, Wick rotating k0 → ik0 to get an integral over Euclidean space
time, one easily obtains

M2 = g2
∫

d4k

(2π)4

2k2

k4 + v2
. (22)

There is one remaining step; we still have to calculate the integral of (22). Using dimensional
regularization, we find the finite result

M2 = −g2v

16π
< 0 (23)

where we have used that v > 0. Here we find a different result in comparison with the other
references [14, 22–24]. To be more precise, we find the opposite sign. This sign difference
is not meaningless, since the negative sign we find means that the off-diagonal fields have a
tachyonic mass.

Hence, we state that a ghost condensation à la 〈εabC̄aCb〉 is not the mechanism behind the
off-diagonal mass generation in MAG, and consequently does not give evidence for Abelian
dominance.

Another important point is what happens with the diagonal gluon. Consider the term
iC̄aDac

µ DµcbCb of (13); it contains a part proportional to iC̄aCaaµaµ. Doing the same
as for the off-diagonal gluons, the diagonal gluon aµ seems to get a (real) mass too,
which is of the same order as the off-diagonal one (up to the sign). However, there are
other one-loop contributions coming from the terms proportional to εab(∂µC̄a)Cbaµ and
εabC̄a(∂µCb)aµ. These contributions cancel the one coming from the term proportional to
iC̄aCaaµaµ. Consequently, the ‘photon’ aµ remains massless, as could be expected by the
residual U(1) invariance.

Another point of concern is the renormalizability of the ‘Gaussianized’ Lagrangian.
A completely analogous approach can be done in the case of the two-dimensional Gross–
Neveu model [28], where the four-fermion interaction can also be made Gaussian by the
introduction of an auxiliary field σ . This works well at one-loop order, but from two loops
onwards, ad hoc counterterms have to be added in order to end up with finite results [29]. A
successful formalism to deal with local composite operators in the case of the Gross–Neveu
model was developed in [30]. A similar approach should be used to investigate the ghost
condensates.

One could wonder what the mechanism behind the mass generation might be, since the
previous paragraphs showed that we did not find a dynamically generated real mass for the
(off-diagonal) particles. In order to find an answer to this question, we first give a very short
overview of recent results in the Landau gauge, giving us a hint in which direction we should
look for the mass generation.

3. Gluon condensation via A2 in the Landau gauge and its nephew A2 in
the maximal Abelian gauge

A well known condensate in QCD (or Yang–Mills) is the dimension 4 gluon condensate〈
FA

µνFµνA〉
. This is the lowest dimensional gluonic condensate that can exist, since no local,

gauge-invariant condensates with dimension lower than four exist. However, recently interest
arose concerning a dimension 2 gluon condensate in the Yang–Mills theory in the Landau
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gauge. One way it came to attention was the conclusion that there exists a non-negligible
discrepancy between the lattice strong coupling constant αs (determined via the three-point
gluon interaction) and the perturbative one, into a relatively high energy region where this
would not be expected (up to 10 GeV). Also, the propagator showed a similar discrepancy.
The 1

p4 power correction due to 〈F2〉 is far too small to explain this. It was shown that a 1
p2

power correction could solve the discrepancy. More precisely, the operator product expansion
(OPE) used in combination with the 〈A2〉 condensate was able to fit both predictions [31, 32].
An important question that naturally arises is: has 〈A2〉 any physical meaning, or is it merely a
gauge artefact? The point is that A2 equals (V T )−1 minU

∫
d4xAU

µAµU in the Landau gauge,
and the latter operator is, although non-local, gauge invariant. Hence, A2 can be given physical
sense in the Landau gauge. Moreover, [33] discussed the relevance of A2 in connection with
topological structure (monopoles) of compact QED. The physical relevance of the Landau
gauge, in the framework of geometrical monopoles, is explained in [34]. The authors of that
paper also stress that the values found with an OPE calculation only describe the soft (infrared)
content of 〈A2〉, while they argue that also hard (short range) contributions, unaccessible for
OPE, may occur. In this context, we cite [35], where a formalism was constructed for the
calculation of the vacuum expectation value of (local) composite operators. Since this is based
on the effective action, it should in principle, give the ‘full’ value of 〈A2〉, i.e. soft and hard
parts. For example, one could assume an instanton background as a possible source of long
range contributions. In fact, there is some preliminary evidence that instantons can explain
the OPE values [36].

The conclusion that one can draw from all these is that the dimension 2 condensate 〈A2〉
may have some physical relevance in the Landau gauge.

Let us go back to MAG3 now. In this particular gauge, (V T )−1 minU

∫
d4xAU

µAµU no
longer reduces to a local operator. It would be interesting to repeat e.g. the OPE calculations of
[32] for the coupling constant and propagators in MAG, but which dimension 2 condensate(s)
could take over the role of 〈A2〉 in the Landau gauge? To solve this, we draw attention to
the striking similarity existing between the Landau gauge and MAG. The former one can
be seen as that gauge minimizing (V T )−1

∫
d4x

(
AA

µAµA
)U

, while the latter one minimizes

(V T )−1
∫

d4x
(
Aa

µAµa
)U

. This operator reduces to the local one A2 in MAG and can be
seen as the MAG version of A2. Due to the more complex nature of the (renormalizable)
modified MAG, other dimension 2 condensates exist (the ghost condensates). Note that all
these condensates are U(1) invariants, hence the U(1) symmetry will be preserved.

The physics we see behind all these condensates is that they might have a common, deeper
reason for existence. In this context, we quote [38, 39], where it was shown that the zero
vacuum is instable (tachyonic) and a vacuum with lower energy is achieved through gluon
pairing, and an accompanying gluon mass. The vacuum energy itself is a physical object.
After choosing a certain gauge, the different types of dimension 2 condensates are just an
expression of the fact that E = 0 is a wrong vacuum state. In this sense, all these different
condensates in different gauges are equivalent in a way, since they lower the vacuum energy
to a stable E < 0 vacuum. In [34], discussion can be found on the appearance of the soft
part of 〈A2〉 in gauge-variant quantities as in an OPE improvement of the gluon propagator,
while the hard part enters physical quantities. It is imaginable that the mechanism behind this
hard part (see [34] for more details) is the same in different gauges, but reveals its importance
with different condensates, depending on the specific gauge. This might justify its possible
appearance in gauge-invariant quantities.

3 Here, with MAG we mean the gauge minimizing the functional (4), and not the modified MAG.
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4. Further discussion on the ghost condensation and mass generation in
the modified MAG

In [41], it was shown that it is possible to fix the residual Abelian gauge freedom of MAG in
such a way that the ghost condensate 〈εabC̄aCb〉 does not give rise to any mass term (at least
at the one-loop level). This Abelian gauge fixing (needed for a complete quantization of the
theory) was based on the requirement that the fully gauge fixed Lagrangian has a SL(2,R) and
anti-BRST invariance. A restricted4 version of this SL(2,R) symmetry was originally observed
in SU(2) MAG in [24], and later generalized to SU(N) MAG [42]. In [41], the symmetry was
defined on all the fields (diagonal and off-diagonal). In fact, this SL(2,R) symmetry together
with the (anti-)BRST symmetry forms a larger algebra, the Nakanishi–Ojima (NO) algebra.
This NO algebra is known to generate a symmetry of the Landau gauge and a certain class
of generalized covariant gauges, more precisely the Curci–Ferrari gauges, given by the gauge
fixing Lagrangian

LGF+FP = iδBδ̄B

(
1

2
AA

µAµA − α

2
iCAC̄A

)
. (24)

The Landau gauge corresponds to the gauge parameter choice α = 0. For more details, see
[43–47].

Yang–Mills theory with the gauge fixing (24) possesses a generalization to a massive
SU(N) gauge model, the so-called Curci–Ferrari model [48]. Although this model is non-
unitary, it is known to be (anti-)BRST invariant and renormalizible, whereby the mass term is
of the form

Lmass = M2
(

1
2A

A
µAµA − iαCAC̄A

)
. (25)

Keeping this in mind and recalling that in [35], a dynamically generated mass was found in
the case of the Landau gauge by coupling a source J to the operator A2, it becomes clear that
in the case of the Curci–Ferrari gauge, the same technique could be employed by coupling a
source J to the composite operator

Lsource = J
(

1
2A

A
µAµA − iαCAC̄A

)
. (26)

In the meantime, the construction of an effective potential for this operator was performed in
[49].

Returning to the case of MAG and comparing the gauge fixing Lagrangians (5) and (24),
the equivalent of (26) reads

Lsource = J
(

1
2Aa

µAµa − iαCaC̄a
)
. (27)

This idea to arrive at a dynamically generated mass in the case of the Curci–Ferrari and
maximal Abelian gauge was already proposed in [37, 40]. There, it was explicitly shown
that the operator coupled to the source J in the expressions (26) or (27), is on-shell BRST
invariant.

We reserve the actual discussion of the aforementioned framework to get a dynamical
mass for future publications [49], since it is quite involved and a clean treatment of it needs a
combination of the local composite operator formalism [35] and the algebraic renormalization
technique [50, 51].

Before turning to conclusions, we want to draw attention to the following. We decomposed
the 4-ghost interaction with a real auxiliary field φ whereby φ ∼ εabC̄aCb. Let us make a
small comparison with ordinary superconductivity. Usually, BCS pairing is talked about,
i.e. particle–particle and hole–hole pairing. The analogy of this in the ghost condensation
4 By restricted, we mean that the symmetry only acts non-trivially on the off-diagonal fields.
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case would be ghost–ghost pairing and antighost–antighost pairing. This can be achieved
by an alternative decomposition of the 4-ghost interaction via a pair of auxiliary fields σ

and σ̄ such that σ ∼ εabCaCb and σ̄ ∼ εabC̄aC̄b. This kind of pairing5 was considered in
[52, 53]. A less known effect is the particle–hole pairing, the so-called Overhauser pairing
[54]. This corresponds to the kind of condensation we and the papers [14, 22–24] considered.
From the viewpoint of the SL(2,R) symmetry, the existence of different channels where the
ghost condensation can take place should not be surprising. The different composite ghost
operators are mutually changed into each other under the action of the symmetry. Here and in
the other papers, the choice was made to work with the Overhauser channel, but a complete
treatment would need an analysis of all channels at once, and with the local composite operator
technique. This analysis of the BCS versus Overhauser effect is nicely intertwined with the
existence of the NO algebra and its (partial) breakdown, and it is very much alike for the MAG,
Landau [55] and Curci–Ferrari gauge, just as in the case of the mass generation mechanism.
As an indication, it has been found recently that, although no 4-ghost interaction is present in
the Landau gauge, the condensation à la f ABC C̄ACB etc also occurs [56].

5. Conclusion

We considered Yang–Mills theory in the maximal Abelian gauge. With this non-linear gauge
choice, a 4-ghost interaction enters the Lagrangian. Such an interaction could allow a non-zero
vacuum expectation value for (off-diagonal) dimension 2 ghost condensates. Consequently, it
was expected that a mass generating mechanism for the off-diagonal gluons due to four-point
interaction terms of the form gluon–gluon–ghost–anti-ghost was found.

We explained why this particular type of ghost condensation is not sufficient to construct a
(off-diagonal) dynamical mass in SU(2) Yang–Mills theory in the maximal Abelian gauge, an
indicator for Abelian dominance. We have restricted ourselves to the SU(2) case, but a similar
conclusion will exist for general it SU(N). Explicit calculations showed that we ended up with
a tachyonic off-diagonal mass M (M2 < 0). This result indicates something is missing. A
comparison with the Yang–Mills theory in the Landau gauge and the role played by the mass
dimension 2 gluon condensate 〈A2〉 shed some light on the route that should be followed.

We revealed certain shortcomings of the present available studies on the ghost
condensation (renormalizability, existence of more than one condensation channel). The
actual study of the mass generation and the ghost condensation with its symmetry breaking
pattern will be discussed elsewhere. We will follow the local composite operator formalism
of [35], where a source is coupled to each operator and the effective action can be treated
consistently. This effective potential formalism allows a clean treatment of the role played
by the dimension 2 operators. We remark that with essentially perturbative techniques, one
can obtain at least qualitatively trustworthy results6 on the stability of the condensates and
their relevance for e.g. mass generation and symmetry breakdown, without making it directly
necessary to go to (or extrapolating to) strong coupling. By now, some progress has already
been made on these issues in the Landau gauge, see [55].

We conclude by mentioning that the dimension 2 condensates and the accompanying
mass generation in Yang–Mills are not only of theoretical importance (the role of 〈A2〉 for
OPE corrections [31, 32], monopoles [33, 34], short range linear correction to the Coulomb-
like potential [31], low energy effective theories [57], . . . ) but also have their importance for
automated Feynman diagram calculations [58–60] where a gluon mass serves as an infrared
5 Our conclusion about the tachyonic mass is unaltered by this alternative decomposition of the 4-ghost interaction.
6 In the case of the Gross–Neveu model, very accurate results were obtained [30]. In the case of the 〈A2〉 condensate
in the Landau gauge, the relevant coupling constant was quite small, making the expansion acceptable [35].
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regulator. If this mass is generated in massless Yang–Mills, it does not have to be implemented
by hand.
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